
1

Finite Domain
Constraint Programming

Systems

Mats Carlsson
SICS

Uppsala, Sweden
����������	���
���������

Christian Schulte
IMIT, KTH

Stockholm, Sweden
��������������	�
���
��������������

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 2

What Is This Tutorial About?
� Focus is on

� Services systems provide
� Implementation of these systems

� No detailed description of one system
� Common techniques, approaches, challenges
� No intention to do complete survey

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 3

Finite Domain Constraint
Programming Systems
� Offer reusable software components for

� constraint propagation
� combining constraints (combinators)
� search

� branching (labeling)
� exploration (for example: depth-first, LDS, …)

� user extensions

� Services provided
� environment for integrating components
� libraries of commonly used components

[Henz & Müller 00]

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 4

Systems Discussed
� Prolog-based systems

 SICStus Prolog, Eclipse Prolog, GNU Prolog, CHIP,…

� Libraries
 ILOG Solver (C++) and JSolver (Java), Choco

(Claire), Figaro (C++), Facile (Ocaml), CHIP Library
(C++)

� Specialized languages
 Claire, Oz

2

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 5

Outline of Tutorial
� Constraint propagation

� example [Christian]
� model [Christian]
� implementation [Mats]
� optimizations [Mats]

� Search [Christian]
� Combinators [Christian]
� Trends & Challenges [Mats]

� References

Constraint
Propagation

Example

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 7

Example

x + y = 9 2x + 4y = 24

9876543210y

9876543210x

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 8

Example

x + y = 9 2x + 4y = 24

9876543210y

9876543210x

3

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 9

Example

x + y = 9 2x + 4y = 24

9876543210y

9876543210x

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 10

Example

x + y = 9 2x + 4y = 24

9876543210y

9876543210x

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 11

Example

x + y = 9 2x + 4y = 24

9876543210y

9876543210x

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 12

Example

x + y = 9 2x + 4y = 24

9876543210y

9876543210x

4

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 13

x + y = 9 2x + 4y = 24

Example

9876543210y

9876543210x

Constraint
Propagation

Model

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 15

Constraint Propagation
� Variables

 feature variable domain (finite set of integers)

� Propagators
 implement constraints

� Propagation loop
 execute propagators until simultaneous fixpoint

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 16

Propagator
� Propagator p is procedure

 implements constraint con(p)

its semantics (set of tuples)
 computes on set of variables var(p)

� Execution of propagator p
 narrows domains of variables in var(p)
 signals failure
 signals entailment [discussed later]

5

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 17

Classes of Constraints
� Basic constraints

� Constraints for which the solver is complete
 x ∈ D, x = v, x = y (variable aliasing)

� Primitive constraints (need propagators)
� Non-decomposable constraints

 x<y, x≠y, x+y = z, x*y = z, …
� Global constraints (need propagators)

� Subsume a set of basic or primitive constraints,
usually providing stronger consistency

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 18

Reification
� Control constraint by control variable b∈{0,1}

c
�

b=1
 also require propagator

� A.k.a.: metaconstraints

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 19

Propagators Are Intensional
� Propagators implement narrowing

 also: filtering, propagation, domain reduction

� No extensional representation of con(p)
 impractical in most cases (space)

� Extensional representation of constraint
 can be provided by special propagator
 often: “element” constraint, “relation” constraint, …

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 20

Implementing Propagators
� Implementation uses operations on variables

 reading domain information
 narrowing domains

� Variables are the only communication
channels between propagators

� More detail later

6

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 21

Propagator Properties
� Propagator p is

 correct: no solution of con(p) is removed
 assignment complete: failure at latest for assignments� compatibility with search

� Propagator p is
 contracting: variable domains are narrowed
 monotonic: application to smaller domains will result in

smaller domains than application to larger domains
 may be idempotent: [discussed later]

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 22

Propagation Loop
� Largest simultaneous fixpoint of propagators

 fixpoint: propagators cannot narrow any further
 largest: no solutions lost

� Guaranteed
 termination: domains finite

propagators contracting
 largest fixpoint: propagators monotonic

Detailed study with proofs: [Apt 00]

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 23

Fix and Runnable Propagators
� Propagator is either

 fix: has reached fixpoint
 runnable: not known to have reached fixpoint

� Propagation loop maintains propagator sets
 all propagators Prop
 runnable propagators Run
 initially Run := Prop

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 24

Sketch of Propagation Loop
��������� (Run 	 ∅)

pick and remove p from Run;

execute p;

ModVar := { x | x modified by p };

DepProp := { q | x∈var(q), x∈ModVar };
Run := join(DepProp, Run);�

7

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 25

Sketch of Propagation Loop
��������� (Run 	 ∅)

pick and remove p from Run;

execute p;

ModVar := { x | x modified by p };

DepProp := { q | x∈var(q), x∈ModVar };
Run := join(DepProp, Run);�

Loop invariant: p is fix 	 p∈(Prop-Run)
CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 26

Sketch of Propagation Loop
���
����� (Run 	 ∅)

pick and remove p from Run;

execute p;

ModVar := { x | x modified by p };

DepProp := { q | x∈var(q), x∈ModVar };
Run := join(DepProp, Run);�

Termination (Run=∅): p is fix 	 p∈Prop

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 27

Sketch of Propagation Loop
��������� (Run 	 ∅)

pick and remove p from Run;

execute p;

ModVar := { x | x modified by p };

DepProp := { q | x∈var(q), x∈ModVar };
Run := join(DepProp, Run);�

Ignored: failure (signaled by p)
CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 28

Consistency Level Computed
� Model is generic
� Consistency level defined by each individual

propagator
� accurate way of characterization [Maher 02]

� Supports many different consistency levels
� propagator for domain-consistent alldifferent
� propagator for bound-consistent alldifferent
� propagator for value-consistent alldifferent

8

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 29

Major Design Decisions
� Implementing Run (that is, pick and join)

� queue: first in – first out
� stack: last in – first out
� priority queue

� Implementing ModVar and DepProp
� variable-centered representation

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 30

Implementing
ModVar and DepProp
� Variable-centered approach

� each variable x knows dependent propagators
� typically organized as list (suspension list)
� propagator p included in list of x � x∈var(p)

� Upon propagator creation
� propagator subscribes to its variables
� becomes runnable

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 31

Propagators
�

Variables

� Propagators know their variables� to perform domain modifications� passed as parameters to propagator creation

propagatorpropagator

x y z

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 32

Variables � Propagators

� Variables know dependent propagators� to perform efficient computation of dependent propagators� implemented by suspension lists

propagatorpropagator

x y z

9

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 33

Modifying a Variable
� Traverse suspension list� add propagators to Run

� Optimization� mark runnable propagators� that is: propagators already in Run

� Multiple variable modification by propagator� explicitly maintain ModVar (as in model)� only after propagator execution: process ModVar� suspension list traversed only once per variable

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 34

Propagation Events
� Use knowledge on propagator to avoid its redundant execution

� redundant: application to fixpoint

� Example: bound-consistent linear equality
� need to execute, if bound of variable changes
� no need to execute, if inner value of variable removed

� Suspension list:
�
propagator,event �

� event describes relevant domain modifications
� implementation: lists per event, single list of pairs
� events: VALUE, BOUND, DOMAIN

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 35

Idempotent Propagators
� Idempotent propagator� always computes fixpoint

� Propagation loop perspective � no need to include in Run� more efficient: saves one invocation of propagator

� Propagator perspective� must compute fixpoint itself� more efficient: specific method for computing fixpoint� might be more challenging
CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 36

Propagator Entailment
� Propagator will never contribute anything� fixpoint property preserved by narrowing

� Delete propagator, if entailment detected� remove from suspension-list, or� mark as dead, delegate removal to garbage collection

� Similar to consistency, different entailment levels� semantically relevant in concurrent constraint programming

10

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 37

Summary of Model
� Variables

� domain
� suspension list: � event, propagator �

� Propagators
� intensional, correct, contracting, monotone, define

consistency level, …
� know variables for narrowing

� Propagation loop
� computes largest simultaneous fixpoint

Constraint
Propagation

Implementation

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 39

Propagation Queues
� Contents� Events, variables, or propagators
� Scheduling Policy� LIFO makes sense for “important” events� FIFO – fair scheduling, no starvation� Compare LIFO and FIFO for:

� x>y, y>x, x≥100t, y≤t, {x,y,t} ∈ 1..1000
� Structure� Flat or layered

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 40

Layered Propagator Queue
� CHOCO’s 8 priority levels

� VALUE event queue: LIFO
� BOUND event queue: FIFO
� DOMAIN event queue: FIFO
� P’s for extensionally defined constraints (AC-4)
� O(N) propagators
� O(< N2) propagators
� O(N2) propagators
� O(> N2) propagators

[Laburthe 00]

11

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 41

Stateful Propagators
� Prerequisite for incremental algorithms� Can bring down complexity by an “order”
� Arguments checked initially only
� Prolog level state not enough
� State can be used for:� Gradually ignoring ground variables� Data structures for the filtering algorithm� Memory of variables’ min/max/domain� Local trailing for backtracking

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 42

What Does a Propagator
Know?

� Course-grained information
� Something has changed (SICStus, Mozart)

� Medium-grained information
� Variables v3, v7, v11 have changed (CHIP)

� Fine-grained information (ILOG)

� Stateful propagators can figure out what
changed

{1,5}2..41..5V1

DeltaNew domainOld domainVariable

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 43

What Does a Propagator
Need?

� A good filtering algorithm� An algorithm library might come in handy� Shortest-path, bipartite matching, max flow, min-cost flow,
profiles, strongly connected components, …� ADT: finite domain

� ADT: domain variable
� Host language services
� Solver kernel interface� True/false/suspend, replace_by, I_am_not_idempotent, …� State

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 44

ADT: Finite Domain
� Representation

� List of intervals (ECLiPSe, SICStus)
� Bounds + bit array (CHIP, GNU Prolog, Mozart)
� Bounds + list of holes
� Interval trees
� Multiple, adaptive (CHOCO, Mozart, …)

� Operations
� Set operations
� Constructors, iterators
� Complexity depends on representation

12

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 45

ADT: Domain Variable
� Representation

� Logic variable + attributes for domain and
suspensions, or

� Class instance
� Operations

� Access min, max, domain
� Adjust min, max, domain; remove values
� Raise events
� Attach/detach suspensions

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 46

Variable Aliasing (x = y)
� Only an issue in logic-based languages
� Normalization:

� Merge suspension lists
� Intersect domains
� Raise events
� IF con(p) mentions both x and y THEN

� p may no longer be idempotent
� p can make more inferences, e.g.:

xor(x,y,z), x=y � z=0

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 47

Host Language Services
(Generic)

� Memory management
� Allocation: objects, states
� Garbage collections: term refs in states and queues
� Copying

� Trailing
� Coarse or fine
� Semantic trailing for self-destruct on backtracking

� Resume/suspend mechanism
� Full coroutining, multithreading etc. not needed

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 48

Host Language Services
(Prolog-Based)

� Predicate/function type extensions
� Constraints must be callable like predicates
� WAM support for indexicals (coming slides)

� Attributed variables [Holzbaur 92] [Le Huitouze 90]
� Domains
� Suspensions
� Unification hook

� Mutable terms
� Coarse trailing

13

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 49

Implementation Choices
� In host language

� Prolog (ECLiPSe, SICStus)
� C++ (ILOG Solver, Figaro, CHIP Library)
� Claire (CHOCO)
� Java (ILOG JSolver)

� C/C++
� For predefined constraints (ECLiPSe, SICStus)
� For predefined + user-defined constraints (Mozart)

� Indexicals
� For “pseudo primitives” (GNU Prolog, SICStus)

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 50

Indexicals
� Given C(X1,…,Xn), for each i, provide a rule

Xi in Ri
which computes the feasible values of Xi

� Example: X = Y + C, arc-consistent version
eqcd(X,Y,C) +:

X in dom(Y)+C,
Y in dom(X)-C.

� Example: X = Y + C, bound-consistent version
eqcd(X,Y,C) +:

X in min(Y)+C..max(Y)+C,
Y in min(X)-C..max(X)-C.

[Van Hentenryck & Deville & Saraswat 92]

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 51

Indexicals: Syntax of X in R

Range expressions
R ::= T..T | R/\R | R\/R | \R | R+T | R-T | R mod T | {T,…,T} |

dom(X)

Term expressions
T ::= T+T | T-T | T/>T | T</T | T mod T | min(X) | max(X) | X |

integer | inf | sup

Monotone indexicals for propagation
Anti-monotone indexicals for entailment check

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 52

Indexicals for Reification

Example: X = Y + C, SICStus syntax

?- eqcd(X,Y,5) #
�

B.

eqcd(X,Y,C) +: % propagation
X in dom(Y)+C, Y in dom(X)-C.

eqcd(X,Y,C) -: % converse propagation
X in \{Y+C}, Y in \{X-C}.

eqcd(X,Y,C) +? % entailment check
X in {Y+C}.

eqcd(X,Y,C) -? % disentailment check
X in \dom(Y)+C.

[Carlsson & Ottosson & Carlson 97]

14

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 53

Indexicals: Implementation
� Compiled to (bytecode,symbol table)
� Syntax intercepted by term expansion
� Executed by a simple stack-based VM
� eqcd/3 gets defined as a Prolog predicate

� The WAM escapes to a solver entrypoint

[Carlsson & Ottosson & Carlson 97]

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 54

Indexicals: Pros and Cons
� Efficiency: witness GNU Prolog
� A RISC approach to constraint solving
� A VM for propagators
� A language for fine-tuned propagation in a

general framework
� Can detect entailment as well as propagate
� Drawbacks

� Pseudo-primitives only (no global constraints)
� N propagators needed for 1 constraint

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 55

An Entity-Relationship Model
(CHOCO, Figaro, ILOG)

� Objects
� Problems
� Variables
� Domains
� Constraints

� Relationships
� Links between constraints and variables

(constraint, variable, event)
[Puget 94][Puget & Leconte 95] [Laburthe 00]

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 56

Constraint Objects
� State in private data
� Virtual methods for (some of):

� Posting
� Propagation
� Entailment/disentailment test
� Reification
� Profiler and visualizer services
� Memory manager services

15

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 57

The ILOG Global Constraint
API (Simplified)

class ClassName : public IlcConstraint {

public:

ClassName(IloSolver solver, Args);

~ClassName(void);

virtual void post(void);

virtual void propagate(void);

virtual IlcBool isViolated(void) const;

};

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 58

The Mozart Global Constraint
API (Simplified)

class ClassName : public OZ_Propagator {

public:

ClassName(OZ_Term Args);

virtual OZ_Return propagate(void);

virtual size_t sizeOf(void);

virtual void gCollect(void);

virtual void sClone(void);

virtual OZ_Term getParameters(void) const;

};

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 59

A Global Constraint API for
Prolog (SICStus)

� fd_global(+C, +S, +V)
� Posts a global constraint C with initial state S, suspended

according to V, which is a list of
dom(X), min(X), max(X), minmax(X), val(X)

� dispatch_global(+C, +S0, -S, -A)
� user defined
� Entrypoint to the propagator of constraint C with state S0,

producing a new state S and kernel requests A
(true/false/suspend, events)

� ADTs for domains and domain variables
� Control is implicit

Constraint
Propagation

Optimizations

16

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 61

Rewriting
� Generic → special

3x + y – z = 0, x = 0

→
y = z (variable aliasing)

� Gradual decomposition
alldiff([T,U,V,X,Y,Z]), [T,U,V] in 1..3, [X,Y,Z] in 4..6

→
alldiff([T,U,V]), alldiff([X,Y,Z])

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 62

Avoiding Useless Work
� Idempotent p should be immune to events

raised by p
� Kernel may or may not assume idempotence

� An entailed p should never be resumed
� It can even be detached (undoably) from var(p)

� IF time of latest event < time of latest resumption
THEN don’t resume p

� Event queues require timestamps
� Indexicals linked to the same constraint should

(sometimes) be immune to each other’s events

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 63

More Optimizations
� Different event types

� VALUE > BOUND > DOMAIN
� p is suspended on a set of (v,event)
� Demons vs. propagators

� Scheduling policies
� Poorly understood
� Complexity-based priority queues make sense
� Always bear the worst case in mind

Search

17

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 65

Branching and Exploration
� Branching: defines shape of search tree

� labeling, branching, distribution, …
� often based on heuristics

� Exploration: explore nodes of search tree
� often fixed to be depth-first
� many aspects

� optimization (branch-and-bound)
� development tools (Oz Explorer)
� parallelism (ILOG Solver, Oz)

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 66

Branching
� Requires synchronization on fixpoint

� for implementing dynamic variable orderings
� by construction: Prolog, ILOG Solver, …
� explicit synchronization in concurrent setup: Oz

� Programmed
� from builtin-search: Prolog-based
� special (language) constructs: ILOG Solver, Oz

� Typically, rich library available

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 67

Exploration
� All systems support

� search for first solution
� search for some/all solutions
� search for best solution

� Most systems support
� LDS and some variants

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 68

Exploration Strategy
� Often fixed to be depth-first

� Sometimes can be programmed
� Oz: spaces (“nodes”) as ADT for exploration

� exploration programmed from operations
� for example: copy node in search tree

access solution
� ILOG Solver: control exploration by limits and priorities

� limit cut-off branches
� priorities which node to explore next

[Schulte 97] [Perron 99]

18

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 69

Infrastructure for Exploration
� State restauration

� backtrack to a previous state

� Approaches
� trailing: recording and undoing changes
� copying: put complete state aside
� recomputation: recompute state on need

� By far dominating approach: trailing
CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 70

Trailing
� Trailing stores undo and redo information

� interleaved with constraint propagation
� uses trail data structure
� update: put

�
location,content �

� undo: write location � content
� every choice point: put mark or record top of trail

� Requires
� all updates trail-aware
� for example: domain change, change of suspension list, …

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 71

Time Stamping
� Problem: multiple change of same location

� for example: multiple narrowing of domain
� only original value needs restauration
� intermediate values not needed

� Solution: local time stamp on modified entity
� new choice point increase global time stamp
� upon modification trail, if local stamp earlier

update local stamp

[Aggoun & Beldiceanu 90] [Aggoun & Beldiceanu 91]

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 72

Multiple Value Trail
� Modifying n successive locations

� record start, number (n) and n locations on trail
� instead of 2n individual entries

[Aggoun & Beldiceanu 90] [Aggoun & Beldiceanu 91]

19

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 73

Copying And Recomputation
� Copying� operations ignorant of state restauration� support for concurrency and parallelism � alone infeasible: excessive memory requirements

� Hybrid strategies: copying and recomputation� adaptive: create copy on demand to speed up future
recomputation� batch: speed up recomputation by avoiding repeated
fixpoint computation� competitive with trailing

[Schulte 99] [Choi & Henz & Ng 01] [Schulte 02]

Combinators

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 75

Combinators
� Reification-based combination

� reified constraints
� propositional combination

� Propagation-preserving approaches

� Constructive disjunction

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 76

Reification
� Use control variable b∈{0,1}

c � b=1
� Propagate

� c entailed � propagate b=1
� ¬c entailed � propagate b=0
� b=1 entailed � propagate c
� b=0 entailed � propagate ¬c (might be difficult)

20

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 77

Propositional Combination
� Constraints for combining reified constraints

� constraints as connectives over 0/1 variables

� Combine (c1 ∧ c2) ∨ c3� reify each ci to 0/1 variable
� use constraints on 0/1 variables

� Problem: not propagation-preserving
� no propagation between c1 and c2� in c1 ∧ c2, both c1 and c2 propagate individually

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 78

Compositional Approaches
� Use language-based primitives for implementing

combinators
� encapsulated propagation
� generalization of ccp-paradigm
� pioneered by AKL [Haridi & Janson 90]
� generalized to programming abstraction [Schulte 02]

� Advantages and disadvantages
� expressive and propagation preserving
� implementation complex and less efficient than reification
� unclear how to provide in language-independent setting

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 79

Constructive Disjunction
� Idea: make assumptions and generalize

� propagate locally in each branch of disjunction
� lift out common information on domains from branches

� Well researched/published idea
� cc(FD) [Van Hentenryck & Saraswat & Deville 95]
� many other papers, for example [Codognet &

Codognet 95] [Würtz & Müller 96]
� not of strategic importance
� technique useful to know about

Trends and
Challenges

21

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 81

Explanations
� Definition

A (minimal) set of constraints and choices made during search
justifying a propagation event

� Uses
� Understanding dead ends
� Nogoods
� Conflict-directed backtrack search
� Debuggers and visualizers

� Challenges
� Sharp explanations for global constraints
� Bridging semantic gap between application and CP model

[Jussien & Barichard 00]

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 82

Meta-Programming
� Applications:

� Debuggers
� Visualizers
� Static analysers
� Search strategy synthesizers
� Test case generators
� Parser generators for propagators

� Requirement:
� Exact and formal description of all constructs

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 83

Challenges
� Communication between constraints

Constraints communicate via domain variables only, so
constraints are independent of each other

� Good news: constraints can be posted regardless
of already posted ones

� Bad news:
� Loss of global view
� Obvious propagation missing
� Thrashing
� Creates artificial global constraints

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 84

Challenges
� Exact and formal description of all constructs

� Syntax and options
� Declarative semantics
� Events
� Level of consistency
� Complexity

� No information should appear only in the
manual

[Beldiceanu 00]

22

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 85

Challenges
� Hybridization

� with local search
� Let CP explore the neighborhood

� with linear programming
� Benders decomposition

[Eremin & Wallace 01]
� Modelling languages and global constraints
� Optimization

� Cost-based filtering algorithms
� Over-constrained problems

� Replace C(X) by C’(X,cost) where cost is the degree to which X
violates C(X)

[Petit & Régin & Bessière 01]

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 86

Challenges
� Beyond finite domains

[Jaffar & Maher & Stuckey & Yap 94]
� Richer set of basic constraints, e.g. TVPI

X mod 11 ∈ {1,5}, x ≥ 2y+3, …
� Classification and standardization
� Parametric constraints

� One constraint family – one filtering algorithm
[Beldiceanu 2000]

References

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 88

References
[Aggoun & Beldiceanu 90]

A. Aggoun, N. Beldiceanu. Time Stamps Techniques for the Trailed Data in Constraint Logic
Programming Systems, Actes du Séminaire 1990 de programmation en Logique, Trégastel,
France, 1990.

[Haridi & Janson 90]
S. Haridi, S. Janson. Kernel Andorra Prolog and its Computation Model, ICLP 1990.

[Le Huitouze 90]
S. Le Huitouze. A New Data Structure for Implementing Extensions to Prolog, PLILP 1990.

[Aggoun & Beldiceanu 91]
A. Aggoun, N. Beldiceanu. Overview of the CHIP Compiler System, ICLP 1991.

[Holzbaur 92]
C. Holzbaur. Metastructures versus Attributed Variables in the Context of Extensible Unification,
PLILP 1992.

[Van Hentenryck & Deville & Saraswat 92]
P. Van Hentenryck, Y. Deville, V. Saraswat. Constraint Processing in cc(FD). Manuscript, 1992.

[Jaffar & Maher & Stuckey & Yap 94]
J. Jaffar, M. J. Maher, P. S. Stuckey, R. H. C. Yap. Beyond Finite Domains. Proc. PPCP, 1994.

23

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 89

References
[Puget 94]

J.-F. Puget. A C++ Implementation of CLP. Proc. 2nd Singapore Int. Conf. On Intelligent Systems,
1994.

[Codognet & Codognet 95]
P. Codognet, C. Codognet. Guarded Constructive Disjunction: Angel or Demon?, CP 1995.

[Puget & Leconte 95]
J.-F. Puget, M. Leconte. Beyond the Glass Box: Constraints as Objects. Proc. ILPS, 1995.

[Van Hentenryck & Saraswat & Deville 95]
P. Van Hentenryck, V. Saraswat, Y. Deville. Design, Implementation, and Evaluation of the
Constraint Language cc(FD), Constraint Programming: Basics and Trends, LNCS 910, 1995.

[Würtz & Müller 96]
J. Würtz, T. Müller. Constructive Disjunction Revisited, German AI Conf., LNAI 1137, 1996.

[Carlsson & Ottosson & Carlson 97]
M. Carlsson, G. Ottosson, B. Carlson. An Open-ended Finite Domain Solver. Proc. PLILP, 1997.

[Schulte 97]
C. Schulte, Programming Constraint Inference Services, CP 1997.

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 90

References
[Wallace & Novello & Schimpf 97]

M. Wallace, S. Novello, J. Schimpf. ECLiPSe: A Platform for Constraint Logic Programming. Tech
report, IC-Parc, London, 1997.

[Henz & Müller & Ng 99]
M. Henz, T. Müller, K.B. Ng. Figaro: Yet Another Constraint Programming Library. Workshop on
Parallelism and Implementation Technology, ICLP, 1999.

[Perron 99]
L. Perron. Search Procedures and Parallelism in Constraint Programming, CP 1999.

[Schulte 99]
C. Schulte. Comparing Copying and Trailing, ICLP 1999.

[Apt 00]
K. Apt. The Role of Commutativity in Constraint Propagation Algorithms, ACM TOPLAS 22(6),
2000.

[Beldiceanu 00]
N. Beldiceanu. Global Constraints as Graph Properties on Structured Networks of Elementary
Constraints of the Same Type. Tech. Rep. T2000-01, SICS. 2000.

[Henz & Müller 00]
M. Henz, T. Müller. An Overview of Finite Domain Constraint Programming. Proc. APORS, 2000.

CP 2002 M. Carlsson, C. Schulte, Finite Domain Constraint Programming Systems 91

References
[Jussien & Barichard 00]

N. Jussien, V. Barichard. The PaLM System: Explanation-Based Constraint Programming. Proc.
TRICS workshop of CP, 2000.

[Laburthe 00]
F. Laburthe. CHOCO: Implementing a CP Kernel. Proc. TRICS workshop of CP, 2000.

[Choi & Henz & Ng 01]
C.W. Choi, M. Henz, K.B. Ng. Components for State Restoration in Tree Search, CP 2001.

[Eremin & Wallace 01]
A. Eremin, M. Wallace. Hybrid Benders Decomposition Algorithms in Constraint Logic
Programming. Proc. CP, 2001.

[Petit & Régin & Bessière 01]
T. Petit, J.-C. Régin, C. Bessière. Specific Filtering Algorithms for Over-Constrained Problems.
Proc. CP, 2001.

[Maher 02]
M. Maher. Propagation Completeness of Reactive Constraints. Proc. ICLP, 2002.

[Schulte 02]
C. Schulte. Programming Constraint Services, LNAI 2302, 2002.

